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ABSTRACT

In this article, we focus to some classes of fractional iterative integrodif-
ferential equations. Firstly, we interested of the fractional iterative inte-
grodifferential equations including derivatives and establish the existence
and uniqueness solutions by using the non-expansive operators theory
and fixed point theorems. The second studies, we concern of the system
iterative integro-differential equations and show existence and uniqueness
solutions by using the theorem of Banach fixed point and Schaefer fixed
point theorem. In this study, we consider Riemann-Liouville and Caputo
differential operator, further provide example as an application.

Keywords: Fractional; iterative; existence; fixed point theorem Schae-
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1. Introduction

During the past thirty years, there was a senior saucepan of studies in
the area of iterative differential equations. On the other hand, the iterative
differential equations of order fractional does not exceed ten years in terms
of study and discussion. Those equations emerge in an enormous diversity of
applications of scientific and technical, inclusive the modeling of issues from the
naturalistic and social sciences like biological, economics, and physics (Loverro
(2004), Miller and Ross (1993), Nieto and Rodríguez-López (2005), Salahshour
et al. (2015), Srivastava and Agarwal (2013)).

A specific kind is appeared by the fractional differential equations with the
affine amendment of the argument that can be retard fractional differential
equations with a linear change of the argument. There were numerous outcomes
with regard to these equations were presented in the papers (Caballero et al.
(2007), Darwish (2008), Darwish and Ntouyas (2011), Kate and McLeod (1971),
Ke (1994), Myshkis (1977), Norkin et al. (1973)).

Second kind of the type of differential equations of order fractional with amended
arguments are the fractional differential equations with iteration like equation
Dβv(s) = v(v(s)) where 0 < β < 1. There were also quite a number of papers
and the research dealt it (Agarwal et al. (2015), Atangana and Baleanu (2016),
Atangana and Koca (2016), Cheng et al. (2002), Damag et al. (2016, 2017),
Ibrahim et al. (2016, 2015), Lauran (2012, 2013), Wang et al. (2013), Zhang
and Gong (2014), Zhang et al. (2015)).

In this article, to focus to two objectives for some classes of fractional iterative
integrodifferential equations. Firstly, we interested of the fractional iterative
integrodifferential equations including derivatives and prove the existence and
uniqueness of solution by using the non-expansive operators theory and fixed
point theorems. The second studies, we concern of the system iterative integro-
differential equations and show existence and uniqueness solutions by using
the theorem of Banach fixed point and Schaefer fixed point theorem. In this
study, we consider Riemann-Liouville and Caputo differential operator, further
provide example as an application.

122 Malaysian Journal of Mathematical Sciences



Some Solution of the Fractional Iterative Integro-Differential Equations

2. Preliminaries

We recall several important of the definitions, notations, and theorems
which are used in the paper (Berinde (2007), Ishikawa (1976), Miller and Ross
(1993), Oregan (1995), Podlubny (1998), Samko et al. (1993)).

Definition 2.1. (Agarwal et al. (2015), Podlubny (1998), Salahshour et al.
(2015)) The integral operator is defined as

Iαa ψ(s) =
1

Γ(α)

∫ s

0

ψ(β)

(s− β)1−α dβ (1)

where α > 0.

Definition 2.2. (Podlubny (1998), Salahshour et al. (2015), Samko et al.
(1993)) The fractional differentiation operator (Caputo) is defined as

Dα
0 ψ(s) =

1

Γ(ι− α)

∫ s

0

ψ(ι)(β)

(s− β)α−ι+1
dβ (2)

(ι− 1) ≤ α < ι,

where ι is a whole number and α > 0 is a real number.

Definition 2.3. (Miller and Ross (1993), Podlubny (1998), Srivastava and
Agarwal (2013)) The fractional differentiation operator (Riemann-Liouville)
is defined as

Dα
0 ψ(s) =

1

Γ(ι− α)
[
d

ds
]ι
∫ s

0

ψ(β)

(s− β)α−ι+1
dβ (3)

(ι− 1) ≤ α < ι,

where ι is a whole number and α is a real number.

Definition 2.4. (Berinde (2007), Ishikawa (1976), Zhang et al. (2015)) A is
a space of normed linear, Q is a convex and Q ⊂ A and H is a self-mapping
defined by H : Q→ Q. In view of v0 ∈ Q and ξ ∈ [0, 1] is a real number, vi is
a sequence defined by the formula

vi+1 = (1− ξi)vi + ξiHvi, i = 0, 1, 2, . . .

is generally called Mann iteration.

Definition 2.5. (Berinde (2007), Oregan (1995)) (Z, d) is a space of metric
and H is mapping defined by H : Z → Z said to be an η-contraction if there is
η ∈ [0, 1) such that

d(Hz,Hw) ≤ ηd(z, w),∀z, w ∈ Z.

When η = 1, therefore the mapping H is said to be non-expansive.
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Definition 2.6. (Berinde (2007)) A is a space of normed linear and Q ⊂ A is
convex and H is a self-mapping introduced by H : Q→ Q . In view of v0 ∈ Q
and ξ is the real numbers in [0, 1], vi is a sequence defined by the formula

vi+1 = (1− ξ)vi + ξHvi, i = 0, 1, . . . .

In general referred Krasnoselskij iteration or Krasnoselskij-Mann iteration .

Theorem 2.1. : A is space of Banach, Q sub set A, and let H be a non
expansive mapping defined by H : Q→ Q. If process Mann iteration si fulfills
the postulates:

(i) si ∈ Q for each positive integer i,

(ii) 0 ≤ ξi ≤ b < 1, for each positive integer m,

(iii)
∑∞
i=0 ξi =∞. Whether si is bounded, next si −Hsi → 0 as i→∞.

Corollary 2.1. : A is a real normed space and Q ⊂ A is a closed bounded,
convex, and H is a non expansive mapping defined byH : Q → Q. If I − H
maps closed bounded subsets of A into closed subsets of A and si is Mann
iteration, with ξi is fulfilled postulates (i) − (iii) in theorem 2.7, then si is a
strongly converges to a fixed point of H ∈ Q.

Lemma 2.1. Given `1([a, b], R), then ∀s ∈ [a, b], have

Iα.Iγg(s) = Iα+γg(s), for α, γ > 0.

DγIγg(s) = g(s), for γ > 0.

DαIγg(s) = Iγ−αg(s), for γ > α > 0.

Lemma 2.2. For m− 1 < β < m, where m ∈ N∗, the general solution of the
equation Dβy(s) = 0 is given by

y(t) = c0 + c1t+ c2t
2 + . . .+ cm−1t

m−1, (4)

where cj ∈ R, j = 0, 1, 2, . . . ,m− 1.

Lemma 2.3. A is Banach space and Q ⊂ A is a nonempty, compact, and
convex. Then any non-expansive mapping H : Q → Q has at least a fixed
point.
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3. Main Results

In this section, to focus for two aims for establish the existence solutions
of some classes of fractional iterative integrodifferential equations. Firstly,

we interested of the fractional iterative integro-differential equations includ-
ing derivatives as:

Dβv(s) = g
(
s, v(v(s)), v(v′(s)),

∫ s

s0

K(s, r).v(v(r))dr
)
, (5)

with
v(s0 = v0

where s0, v0 in I = [a, b], g : I × I × I × I → I and k : I × I → I are continuous
functions and using theory of the non-expansive operators and theorems of fixed
point to prove. The second studies, the system iterative integro-differential
equations are form:-

Dβ1v(s) = φ1(s)g1(s, v(s), v(v(s), z(s), z(z(s)))

+
∫ s

0
(s−r)α1−1

Γ(α1) g1(r, v(r), z(r), v(v(r)), z(z(r)))dr

Dβ2z(s) = φ2(s)g2(s, v(s), v(v(s), z(s), z(z(s)))

+
∫ s

0
(s−r)α2−1

Γ(α2) g2(r, v(r), z(r), v(v(r)), z(z(r)))dr

v(0) = a, z(0) = b, s ∈ [0, 1]

(6)

where Dβ1 , Dβ2 denote the Caputo fractional derivatives, 0 < βj < 1, j =
1, 2, α1 and α2 are non-negative real numbers, φ1, φ2 are two continuous func-
tions, a > 0, b > 0, g1 and g2 are two functions to be specified later, and using
the theorem of Banach fixed point and theorem of Schaefer fixed point to prove
and we consider Riemann-Liouville and Caputo differential operator, further
provide example as an application.

3.1 The Fractional Iterative Integro-differential Equations
Including Derivatives

We prove the existence and uniqueness of the solution of Eq.(5) and the
non-expansive operators theory and theorems of fixed point to use.

In the following assumptions relating to our further discussion.

Assumptions 3.1. The following assumptions are:-
(A1) There is `1 > 0 so that

|g(χ,Υ1, , w1, z1)− g(χ,Υ2, w2, z2)| ≤ `1[|Υ1−Υ2|+ |w1−w2|+ |z1− z2|] (7)
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for every χ,Υm, wm, zm ∈ I,m = 1, 2,

(A2) if ` there is a constant such that |v(s1)−v(s2)| ≤ ` · |s1−s2|
β

Γ(β+1) , subsequently

M = max {|g(χ,Υ, w, z)| : (χ,Υ, w, z) ∈ I × I × I × I} ≤ `

2
,

(A3) One of these situations are satisfied:

(i)
M.T β

Γ(β + 1)
.Ms0 ≤Mv0 , where T = max {a, b} , and Mv0 = max {v0 − a, b− v0} ;

(ii) s0 = 0, M
(T )β

Γ(β + 1)
≤ b− v0, g(χ,Υ, w, z) ≥ 0, ∀(χ,Υ, w, z) ∈ I,

(iii) s0 = b, M
(T )β

Γ(β + 1)
≤ v0 − a, g(χ,Υ, w, z) ≥ 0, ∀(χ,Υ, w, z) ∈ I,

(A4) v0 ≤ ρ`2
2 , 0 6= s0 ∈ I, ρ ∈ (0, 1).

(A5) if ` there is a constant so that |v(s1) − v(s2)| ≤ ` · |s1−s2|
β

Γ(β+1) , therefore
M = min

{
ρ
2 ,

`
2

}

Let C(I, I) be the Banach space of each continuous functions from I → I given
with the norm ‖v‖ = sup {v(s) : s ∈ I}, Ms = max {s− a, b− s} and

C`,β =

{
v ∈ C(I, I) : |v(s1)− v(s2)| ≤ ` · |s1 − s2|β

Γ(β + 1)
, ∀s1, s1 ∈ I

}
, (8)

where ` > 0 is given. It is evident which C`,β 6= ∅ is subset from (C[I], ‖.‖),
convex, and compact.

Now, start to study some theorems about the fractional iterative integro-
differential equations including derivatives to study the existence solutions:

Theorem 3.1. : Assume which assumptions (A1)− (A3) are fulfilled and

2`1Ms0

[
1 +

T β

Γ(β + 1)
KT

]
(`+ 1) ≤ 1 (9)

In which KT = sup {K(r, s) : a ≤ r ≤ s ≤ b} . Then, the question (5) which
has at least one solution in C`,β, which can be approximated by Krasnoselskii
of iteration

vm+1(u) = (1− η)vm(u)
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+ηv0+η

∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ, vm(vm(µ)), vm(v′m(µ)),

∫ µ

s0

K(µ, r)vm(vm(r))dr
)
dµ,

where u in I, m ≥ 1, u > µ, η ∈ (0, 1) and v1, v
′
1 ∈ C`,β is arbitrary.

Proof. Let G : C`,β → C[I] be the integral operator defined by

(Gv)(u) = v0+

∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ, v(v(µ)), v(v′(µ)),

∫ µ

s0

K(µ, r)v(v(r))dr
)
dµ, u in I, u > µ

v = Gv is a solution of the Eq.(5) for any fixed point. Firstly, prove which C`
is an invariant set with respect to G(i.e. G(C`,β) ⊂ C`,β).
Using assumption (A3)(i), obtain

|(Gv)(u)| ≤ |v0|+
∣∣∣∣∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ, v(v(µ)), v(v′(µ)),

∫ µ

s0

K(µ, r)v(v(r))dr
)
dµ

∣∣∣∣
≤ v0 +M

(s0 − u)β

Γ(β + 1)
Ms0

≤ v0 +Mv0 = v0 + b− v0

≤ b

and

|(Gv)(u)| ≥ |v0|−
∣∣∣∣∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ, v(v(µ)), v(v′(µ)),

∫ µ

s0

K(µ, r)v(v(r))dr
)
dµ

∣∣∣∣
≥ v0 −M

(s0 − u)β

Γ(β + 1)
Ms0

≥ v0 −Mv0 = v0 − v0 + a

≥ a

Consequently, Gv ∈ C`,β for every v ∈ C`,β and s ∈ I.
Likewise, the result is obtained using the assumption (A3)(ii) and (A3)(iii).
Using the assumption (A2) for each s1, s2 ∈ I, get

|(Gv)(u1)− (Gv)(u2)| ≤
∣∣∣∣∫ u1

s0

(u− µ)β−1

Γ(β)
g
(
µ, v(v(µ)), v(v′(µ)),

∫ µ

s0

K(µ, r)v(v(r))dr
)
dµ

−
∫ u2

s0

(u− µ)β−1

Γ(β)
g
(
µ, v(v(µ)), v(v′(µ)),

∫ µ

s0

K(µ, r)v(v(r))dr
)
dµ
∣∣∣
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≤M.
|uβ1 − u

β
2 |+ 2|u1 − u2|β

Γ(β + 1)

≤ 2M.
|u1 − u2|β

Γ(β + 1)
≤ `. |u1 − u2|β

Γ(β + 1)

Subsequently, Gv in C`,β for every v in C`,β . Then G : C`,β → C`,β (i.e. G is
a self-mapping).
Using the assumption (A1) for each v, w ∈ C`,β , and s ∈ I, get

|(Gv)(u)− (Gw)(u)| =
∣∣∣∣∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ, v(v(µ)), v(v′(µ)),

∫ µ

s0

K(µ, r)v(v(r))dr
)
dµ

−
∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ,w(w(µ)), w(w′(µ)),

∫ µ

s0

K(µ, r)w(w(r))dr
)
dµ
∣∣∣

≤
∫ u

s0

∣∣∣∣ (u− µ)β

Γ(β + 1)

[
g
(
µ, v(v(µ)), v(v′(µ)),

∫ µ

s0

K(µ, r)v(v(r))dr
)

−g
(
µ,w(w(µ)), w(w′(µ)),

∫ µ

s0

K(µ, r)w(w(r))dr
)]
dµ
∣∣∣

≤ `1Ms0

[
1 +

T β

Γ(β + 1)
KT

] ∫ u

s0

[
|v(v(µ))−w(w(µ))|+ |v(v′(µ))−w(w′(µ))|

]
dµ

≤ `1Ms0

[
1 +

T β

Γ(β + 1)
KT

] ∫ u

s0

[
|v(v(µ))− v(w(µ)) + v(w(µ))− w(w(µ))|

+|v(v′(µ))− v(w′(µ)) + v(w′(µ))− w(w′(µ))|
]
dµ

≤ `1Ms0

[
1 +

(b− a)β

Γ(β + 1)
KT

] ∫ u

s0

[
`|v(µ)− w(µ)|+ |v(w(µ))− w(w(µ))|

+`|v′(µ)− w′(µ)|+ |v(w′(µ))− w(w′(µ))|
]
dµ

≤ 2`1Ms0

[
1 +

T β

Γ(β + 1)
KT

]
(`+ 1) ‖v − w‖

in which KT = sup {K(r, s) : a ≤ r ≤ s ≤ b} . Presently, by taking the maxi-
mum in last inequality, obtain

‖(Gv)− (Gw)‖ ≤ 2`1Ms0

[
1 +

T β

Γ(β + 1)
KT

]
(`+ 1) ‖v − w‖ .

In view of equation(9)
(a) If 2`1Ms0

[
1 + Tβ

Γ(β+1)KT

]
(` + 1) < 1, thus G is a contraction mapping
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and therefore by the theorem of Banach fixed point equation(5) has a unique
solution.
(b) If 2`1Ms0

[
1 + Tβ

Γ(β+1)KT

]
(`+ 1) = 1, thus G is nonexpansive mapping and

therefore it is continuous. So lemma 11 means that equation(5) has a solution
in C`,β .

Lastly, by applying theorem 2.7 or corollary 2.8, we get the second part of the
theorem.
Then prove the result of equation(5) in a subset of C`,β introduced by

C`,β,ρ =

{
v ∈ C`,β : v(s) ≤ ρsβ

Γ(β + 1)
, for all s ∈ I

}
, ρ ∈ (0, 1).

It is clear which C`,β,ρ is convex, not empty, and compact subset in C(I).�

Theorem 3.2. : Suppose which assumptions (A1), (A3)− (A5) are achieved.
If

L = maxs∈I

{
2
`1
γ

[
1 +

T β

Γ(β + 1)
KT

](
`
∣∣∣(1− e−γ(s−s0))

∣∣∣+
1

ρ

∣∣∣eγ(ρ−1)s − eγ(ρs0−s)
∣∣∣ )} ≤ 1

(10)
Thus, there is at least one solution of the equation (5) in C`,β,ρ that can be
approximated by the iteration of Krasnoselskij

vm+1(u) = (1− η)vm(u) + ηv0

+η

∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ, vm(vm(µ)), vm(vm(µ)), vm(v′m(µ)),

∫ µ

s0

K(µ, r)vm(vm(r))dr
)
dµ,

in which u in I, m ≥ 1, u > µ, η in (0, 1) and v1, v
′
1 ∈ C`,ρ,β is arbitrary.

Proof. Let C(I) be Banach space with the norm given by the Bieleckis formula

‖v‖B = maxs∈I

{
‖v(s)‖ e−γ(s−s0), γ > 0, s > s0

}
Let G be introduced as proof of theorem 3.1.2, by hypothesis (A1), (A3)−(A5),
it is appropriate to show which, if v ∈ C`,ρ,β , therefore G(v) ∈ C`,ρ,β .
For v ∈ C`,ρ,β , and s ∈ I, have

Gv(s) ≤ v0 +M
sβ

Γ(β + 1)

Malaysian Journal of Mathematical Sciences 129



Kılıçman, Adem and Damag, F. H. M.

= v0 +M
(sβ − sβ0 ) + sβ0

Γ(β + 1)

≤ sβ0
2Γ(β + 1)

+
sβ

2Γ(β + 1)
− sβ0

2Γ(β + 1)
+

sβ0
2Γ(β + 1)

≤ sβ

Γ(β + 1)
, s > s0

This proves which G(v) ∈ C`,ρ,β and thus C`,ρ,β is invariant under G.
Presently, for each v, w ∈ C`,β and s ∈ I, get

|(Gv)(u)− (Gw)(u)| =
∣∣∣∣∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ, v(v(µ)), v(v′(µ)),

∫ µ

s0

K(µ, r)v(v(r))dr
)
dµ

−
∫ u

s0

(u− µ)β

Γ(β + 1)
g
(
µ,w(w(µ)), w(w′(µ)),

∫ µ

s0

K(µ, r)w(w(r))dr
)
dµ
∣∣∣

≤ `1
[
1 +

T β

Γ(β + 1)
KT

] ∣∣∣∣∫ u

s0

(
` |v(µ)− w(µ)|+ |v(w(µ))− w(w(µ))|

+` |v′(µ)− w′(µ)|+ |v(w′(µ))− w(w′(µ))|
)
dµ

≤ `1
[
1 +

T β

Γ(β + 1)
KT

]( ∣∣∣∣∫ u

s0

(2`eγ(µ−s0))dµ

∣∣∣∣+

∣∣∣∣∫ u

s0

(2eγ(µρ−s0))dµ

∣∣∣∣ ) ‖v − w‖B
≤ 2`1

[
1+

T β

Γ(β + 1)
KT

]( ∣∣∣∣ `γ (eγ(s−s0) − 1)

∣∣∣∣+ 1

ργ

∣∣∣eγ(sρ−s0) − eγ(s0ρ−s0)
∣∣∣ ) ‖v − w‖B .

Thus,

|(Gv)(u)− (Gw)(u)| e−γ(s−s0) ≤ 2
`1
γ

[
1 +

T β

Γ(β + 1)
KT

](
`
∣∣∣(1− e−γ(s−s0))

∣∣∣
+

1

ρ

∣∣∣eγ(ρ−1)s − eγ(ρs0−s)
∣∣∣ ) ‖v − w‖B Γ

Presently, taking a maximum in the final inequality gives

‖(Gv)(u)− (Gw)(u)‖B ≤ L ‖v − w‖B .

In view of equation (10)
(a) If L < 1, thus G is a contraction mapping and therefore by the theorem of
Banach fixed point equation (5) has a unique solution.
(b) If L = 1, thus G is non-expansive mapping and therefore it is continuous.
So lemma 11 means that equation (5) has a solution in C`,ρ,β .

Lastly, applying theorem 2.7 or corollary 2.8, we get the second part of the
theorem.�
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3.2 System of fractional iterative integro-differential equa-
tions

We considered the existence and uniqueness of the solution of Eq.(3.3). The
theorem of Banach fixed point and Schaefer fixed point theorem are used to
prove.

Now, we start our result in this section:

Lemma 3.1. Let g ∈ C([0, 1], R). The solution of the problem

Dβy(t) = (φg)(t) +

∫ t

0

(t− r)α1−1

Γ(α1)
g(r)dr, 0 < β < 1, α1 > 0 (11)

subject to the boundary condition,

y(0) = y∗0

is given by

y(t) =

∫ t

0

(t− r)β−1

Γ(β)
(φg)(r)dr +

∫ t

0

(t− r)β+α1−1

Γ(α1 + β)
g(r)dr + y∗0 (12)

Proof. Setting
Z(t) = y(t)− Iβ(φg)(t)− Iα1+βg(t), (13)

we obtain

DβZ(t) = Dβy(t)−DβIβ(φg)(t)−D
α1+βg(t),(14)

Therefore, by lemma 2.9,

DβZ(t) = Dβy(t)− (φg)(t)− Iα1g(t), (15)

Hence, (11) is equivalent to Dβz(t) = 0. Finally, from lemma 2.10, we get that
z(t) is constant, (i.e., z(t) = z(0) = y(0) = y∗0), and the proof of lemma is
achieved

Assumptions 3.2. The assumptions are:-
(B1) if ` there is a constant so that |v(s1) − v(s2)| ≤ ` · |s1−s2|

β

Γ(β+1) , therefore
M = `

2
(B2) There are non-negative real numbers mj , nj , (j = 1, 2), so that ∀s ∈ [0, 1]
and (v1, z1), (v2, z2) ∈ R2, have

g1(s, v2, z2, v2(v2), z2(z2))−g1(s, v1, z1, v1(v1), z1(z1)) ≤ m1(`+1)|v2−v1|+m2(`+1)|z2−z1|,
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g2(s, v2, z2, v2(v2), z2(z2))−g2(s, v1, z1, v1(v1), z1(z1)) ≤ n1(`+1)|v2−v1|+n2(`+1)|z2−z1|,

(B3) The functions g1 and g2 : [0, 1]×R4 → R, are continuous
(B4) There are two positive numbers `1 and `2, so that

g1(s, v, z, v(v), z(z)) ≤ `1, g2(s, v, z, v(v), z(z)) ≤ `2, s ∈ [0, 1], (v, z) ∈ R2.

Theorem 3.3. Presume that (B2) achieves. Setting

M1 :=
||φ1||∞

Γ(β1 + 1)
+

1

Γ(β1 + α1 + 1)
,

M2 :=
||φ2||∞

Γ(β2 + 1)
+

1

Γ(β2 + α2 + 1)
,

M = max {M1,M2}. Then if

(M1 +M2)(m1 +m2 + n1 + n2)(`+ 1) < 1, (16)

the fractional system (3.3) has exactly one solution on [0, 1].

Proof. Let us consider
Y := C([0, 1], R).

This space, equipped with the norm ||.||Y = ||.||∞ introduced by

||g||∞ = sup {|g(Y )|, X in [0, 1]} ,

is a Banach space. Also, the product space (Y × Y, ||(v, z)||Y×Y ) is a Banach
space, with norm (v, z)Y×Y = ||v||Y + ||z||Y .
Consider now the operator Ψ : Y × Y → Y × Y , introduced by

Ψ(v, z)(s) = (Ψ1(v, z)(s),Ψ2(v, z)(s)), (17)

where,

Ψ1(v, z)(s) =

∫ s

0

(s− r)β1−1

Γ(β1)
φ1(r)g1(r, v(r), z(r), v(v(r)), z(z(r)))dr

+

∫ s

0

(s− r)β1+α1−1

Γ(β1 + α1)
g1(r, v(r), z(r), v(v(r)), z(z(r)))dr + a (18)

and

Ψ2(v, z)(s) =

∫ s

0

(s− r)β2−1

Γ(β2)
φ2(r)g2(r, v(r), z(r), v(v(r)), z(z(r)))dr
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+

∫ s

0

(s− r)β2+α2−1

Γ(β2 + α2)
g2(r, v(r), z(r), v(v(r)), z(z(r)))dr + b (19)

We shall show that T is a contraction. Let (v1, z1), (v2, z2) ∈ Y ×Y. Therefore,
for each s ∈ [0, 1], get

|Ψ1(v2, z2)(s)−Ψ1(v1, z1)(s)|

≤
(∫ s

0

(s− r)β1−1

Γ(β1)
sup

0≤r≤1
|φ1(r)|dr +

∫ s

0

(s− r)β1+α1−1

Γ(β1 + α1)
dr
)

× sup
0≤r≤1

|g1(r, v2(r), z2(r), v2(v2(r)), z2(z2(r)))−g1(r, v1(r), z1(r), v1(v1(r)), z1(z1(r)))|.

∀s ∈ [0, 1] , we obtain

|Ψ1(v2, z2)(s)−Ψ1(v1, z1)(s)| ≤
(
||φ1||∞
Γ(β1+1) + 1

Γ(β1+α1+1)

)
× sup0≤r≤1 |g1(r, v2(r), z2(r), v2(v2(r)), z2(z2(r)))−g1(r, v1(r), z1(r), v1(v1(r)), z1(z1(r)))|

(20)

Using (B2), we can write:

|Ψ1(v2, z2)(s)−Ψ1(v1, z1)(s)| ≤M1(m1(`+1)(v2−v1)+m2(`+1)(z2−z1)) (21)

Then,

|Ψ1(v2, z2)(s)−Ψ1(v1, z1)(s)| ≤M1(m1 +m2)(`+1)
(
||v2−v1||Y + ||z2−z1||Y

)
(22)

Thus,

|Ψ1(v2, z2)(s)−Ψ1(v1, z1)(s)| ≤M1(m1+m2)(`+1)||v2−v1, ||z2−z1||Y×Y (23)

With the same arguments, as above, we obtain

|Ψ2(v2, z2)(s)−Ψ2(v1, z1)(s)| ≤M2(n1+n2)(`+1)||v2−v1, ||z2−z1||Y×Y . (24)

Finally, using (23) and (24), conclude that

||Ψ(v2, z2)(s)−Ψ(v1, z1)(s)||Y×Y

≤ (M1 +M2)(`+ 1)(m1 +m2 + n1 + n2)||v2 − v1, ||z2 − z1||Y×Y . (25)

From (16), we come to the conclusion that T is a contraction mapping. There-
fore, by Banach’s fixed-point theorem, there is a unique fixed point, that is a
solution of (3.3).�
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Theorem 3.4. Presume that (B3) and (B4) are fulfilled. Then the problem
(3.3) has at least one solution on [0, 1].

Proof. Firstly, to prove that the operator T is completely continuous. (Ob-
serve that T is continuous on Y × Y to the continuity of g1 and g2).
Stride 1:- Let us take ξ > 0 and Aξ := {(v, z) ∈ Y × Y ; ||(v, z)||Y×Y ≤ ξ}, and
presume that (B4) achieves. Then, for (v, z) ∈ Aξ, have

|T1(v, z)(s)| ≤ sβ1 sup0≤s≤1 ·|φ1(s)|
Γ(β1+1) sup0≤s≤1 ·g1(s, v(s), z(s), v(v(s)), z(z(s)))

+ sβ1+α1

Γ(β1+α1+1) sup0≤s≤1 ·g1(s, v(s), z(s), v(v(s)), z(z(s))) + a
(26)

∀s ∈ [0, 1] , and by (B4) , we get

||T1(v, z)(s)||Y×Y ≤ `1(`+ 1)M1 + a < +∞. (27)

Also, have
||T2(v, z)(s)||Y×Y ≤ `2M2(`+ 1) + b < +∞. (28)

Therefore, by (27) and (28),

||T (v, z)||Y×Y

is bounded by C, where

C := (`1.M1 + `2.M2)((`+ 1)) + a+ b. (29)

Stride 2:- The equi-continuity of T : Let s1, s2 ∈ [0, 1], s1 < s and (v, z) ∈ Aξ.
Since 0 < β1 < 1, therefore, we can write

|T1(v, z)(s1)− T1(v, z)(s2)| ≤
∣∣∣ ∫ s20

| (s2−r)
β1−1

Γ(β1) φ1(r)g1(r, v(r), z(r), v(v(r)), z(z(r)))dr

−
∫ s1

0
| (s1−r)

β1−1

Γ(β1) φ1(r)g1(r, v(r), z(r), v(v(r)), z(z(r)))dr

+
∫ s2

0
| (s2−r)

β1+α1−1

Γ(β1+α1) g1(r, v(r), z(r), v(v(r)), z(z(r)))dr

−
∫ s1

0
| (s1−r)

β1+α1−1

Γ(β1+α1) g1(r, v(r), z(r), v(v(r)), z(z(r)))dr

(30)
Using (B4), we can write

|T1(v, z)(s2)− T1(v, z)(s1)| ≤
`1(`+1)||φ1(r)||∞

(
s
β1
2 −s

β1
1 +(s2−s1)β1

)
Γ(β1+1)

+
`1(2`+2)

(
s
β1+α1
2 −sβ1+α1

1 +(s2−s1)β1+α1

)
Γ(β1+α1+1)

(31)
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Similarly, we can have

|T2(v, z)(s2)− T2(v, z)(s1)| ≤
(`+1)`1||φ2(r)||∞

(
s
β2
2 −s

β2
1 +(s2−s1)β2

)
Γ(β2+1)

+
`1(2`+2)

(
s
β2+α2
2 −sβ2+α2

1 +(s2−s1)β2+α2

)
Γ(β2+α2+1)

(32)

From (31) and (32), yields

|T (v, z)(s2)− T (v, z)(s1)| ≤
`1(`+1)||φ1(r)||∞

(
s
β1
2 −s

β1
1 +(s2−s1)β1

)
Γ(β1+1)

+
`1(`+1)

(
s
β1+α1
2 −sβ1+α1

1 +(s2−s1)β1+α1

)
Γ(β1+α1+1)

+
`1(`+1)||φ2(r)||∞

(
s
β2
2 −s

β2
1 +(s2−s1)β2

)
Γ(β2+1)

+
`1(`+1)

(
s
β2+α2
2 −sβ2+α2

1 +(s2−s1)β2+α2

)
Γ(β2+α2+1)

(33)

As s2 ↔ s1, the right side of (33) tends to zero. Therefore, following strides
1, 2 and by the ArzelAscoli theorem, deduce that T is completely continuous.
Then, to consider the set

Ω = {(v, z) ∈ Y × Y/(v, z) = ηT (v, z), 0 < η < 1, (34)

and we prove that it is bounded. Let (v, z) ∈ Ω, therefore (v, z) = ηT (v, z) ,
for some 0 < η < 1. Subsequently, for s ∈ [0, 1], have

v(s) = ηT1(v, z)(s), z(s) = ηT2(v, z)(s). (35)

consequently,
||(v(s), z(s)||Y×Y = η||T (v, z)||Y×Y . (36)

From (B4), we obtain
||(v(s), z(s)||Y×Y ≤ ηC, (37)

in which C is introduced by (29). We get that Ω is bounded.
In conclusion of the fixed points Schaefer theorem, it follows that T has at least
one fixed point, which is a solution of (3.3).

4. Examples

In this section, we show some example to explain our theorems.
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Example 4.1. Consider the initial value problem linked to fractional iterative
contain derivatives and integral equation following

D
1
2 v(s) = − 1

4 + 1
7 (v(v(s)) + v(v′(s)) + 1

16

∫ s
0

1
(2+s)2 (v(v(r))dr

v(0) = 1
3 , v
′(0) = 1

3

(38)

where s in [0, 1], and v in C`,
1
2 ([0, 1]× [0, 1]).

Equation(38) is of the form equation(5)

g(s, v(v(s)), v(v′(s)),K1v(v(s))) = −1

4
+

1

7
(v(v(s)) + v(v′(s)) +

1

16
K1v(v(s))

in which
K1v(v(s)) =

∫ s

0

1

(2 + s)2
(v(v(r)))dr

for any v1, v2, v
′
1, v
′
2 ∈ C1, 12 ([0, 1] × [0, 1]), ands ∈ I that, in given our notes,

that

|g(s, v1(v1(s)), v1(v′1(s)),K1v1(v1(s)))− g(s, v2(v2(s)), v2(v′2(s)),K1v2(v2(s)))|

≤ 1

7

(
|v1(v1(s))− v2(v2(s))|+|v1(v′1(s))−v2(v′2(s))|

)
+

1

16

(
|K1v1(v1(s))−K1v2(v2(s))|

)
≤ 1

7

(
|v1(v1(s))− v2(v2(s))|+|v1(v′1(s))−v2(v′2(s))|

)
+

1

16

(
|K1v1(v1(s))−K1v2(v2(s))|

)
≤ 1

7

(
|v1(v1(s))− v2(v2(s))|+|v1(v′1(s))−v2(v′2(s))|

)
+|K1v1(v1(s))−K1v2(v2(s))|

(39)
Thus `1 = 1

7 , and Mv0 = max {v0 − a, b− v0} →M 1
3

= max
{

1
3 ,

2
3

}
= 2

3 .

The concerning with the solution of v ∈ C`, 12 ([0, 1]× [0, 1]) of equation(38) be-
longing to the set

C`, 12 =

{
v : |v(u1)− v(u2)| ≤ `. |u1 − u2|

1
2

Γ( 1
2 + 1)

∀u1, u2 ∈ [0, 1]

}
with ` = 1

C1, 12
=

{
v : |v(u1)− v(u2)| ≤ 1

0.886
|u1 − u2|

1
2 , ∀u1, u2 ∈ [0, 1]

}
(40)

Presently, M ≤ `
2 = 1

2 , Ms0 = max {s0 − a, b− s0} →Mso = max {0, 1} = 1 ,
such that M.Tβ

Γ(β+1) .Ms0 = ( 1
2 )( 1

0.886 )(1) = 0.5643 < Mv0 = 2
3

Hence

2`1Ms0

[
1+

T β

Γ(β + 1)
KT

]
(`+1) = 0.28571

[
1+

1

0.3544

]
(
3

2
) = 0.23398 < 1 (41)
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From Equations (38)− (41) observe which among all the hypothesis of theorem
3.1.3 are achieved, and therefore the initial value equation (38) has a unique
solution in C1, 12

which can be approximated by iteration of Krasnoselskii

vm+1(s) = (1− η)vm(s) + ηv0 + η

∫ s

0

(s− µ)β−1

Γ(β)

(
− 1

4
+

1

7
(v(v(s)) + v(v′(s))

+
1

16

∫ s

0

1

(2 + s)2
(v(v(r))dr

)
s ∈ I,

in which m ≥ 1, s > µ, η ∈ (0, 1) and v1, v
′(1) ∈ C1, 12

is arbitrary.�

Example 4.2. Consider the following fractional differential system:

D0.5v(s) = e−s

32
√

1+s

(
sin(v(v(s))+z(z(s)))

18(ln(s+1)+1) + 1
)

+
∫ s

0
(s−r)2.5
Γ(3.5)

(
sin(v(v(r))+z(z(r)))

18(ln(r+1)+1) + 1
)
dr,

D0.5z(s) = e−s
2

32
√

1+s2

(
sin(v(v(s)))+sin(z(z(s)))

16(es2+1)

)
+
∫ s

0
(s−r)1.5
Γ(2.5)

(
sin(v(v(r)))+sin(z(z(r)))

16(er2+1)

)
dr,

v(0) =
√

3, z(0) =
√

2, s ∈ [0, 1]

(42)

where, β1,2 = 0.5, α1 = 3.5, and α2 = 2.5, a =
√

3, b =
√

2, g1(s, v, z, v(v), z(z)) =
sin(v(v(s))+z(z(s)))

18(ln(s+1)+1) +1, g2(s, v, z, v(v), z(z)) = sin(v(v(s)))+sin(z(z(s)))

16(es2+1)
, φ1(s) = e−s

32
√

1+s

and φ2(s) = e−s
2

32
√

1+s2
. For (v1, z1), (v2, z2) ∈ R2, s ∈ [0, 1], have

|g1(s, v2, z2, v2(v2), z2(z2))− g1(s, v1, z1, v1(v1), z1(z1))|

≤ 1

18
(|v2 − v1|+ |z2 − z1|)

|g2(s, v2, z2, v2(v2), z2(z2))− g2(s, v1, z1, v1(v1), z1(z1))|

≤ 1

16
(|v2 − v1|+ |z2 − z1|)

Then, M1 = 0.076, M2 = 0.201, M = max {M1,M2} = 0.201. Therefore,
M = `

2 ⇔ ` = 0.402,m1 = m2 = 0.07789, n1, n2 = 0.0876 Hence, (M2 +
M1)(`+ 1)(m2 +m1 + n2 + n1) = 0.128537 < 1

The conditions of the theorem 3.2.3 achieved. Then, the problem (42) has
a unique solution on [0, 1].�
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Example 4.3. Consider the following fractional differential system:

D
3
4 v(s) = cosh(1− π2s) cos(v(v(s) + z(z(s)) + ln(s+ 4)

+
∫ s

0
(s−r)

√
11−1

Γ(
√

11)

(
cos(v(v(r) + z(z(r)) + ln(r + 4)

)
dr,

D
5
7 z(s) = sinh(1− πs2)se(−v(v(s))−z(z(s)))

+
∫ s

0
(s−r)

√
7−1

Γ(
√

7)

(
re(−v(v(r))−z(z(r)))

)
dr,

v(0) = 2, z(0) =
√

5, s ∈ [0, 1]

(43)

where, β1 = 3
4 , β2 = 5

7 , α1 =
√

11, and α2 =
√

7, a = 2, b =
√

5,∀s ∈ [0, 1].Also
have φ1(s) = cosh(1 − π2s) and φ2(s) = sinh(1 − πs2). For each (v, z) ∈ R2,
have

g1(s, v, z, v(v), z(z)) = cos(v(v(s) + z(z(s)) + ln(s+ 4)

g2(s, v, z, v(v), z(z)) = se(−v(v(s))−z(z(s)))

It is obvious that g1 and g2 are bounded and continuous functions. Under the
conditions of theorem 3.2.4, the problem (43) has at least one solution in [0, 1].�
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